Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428047

RESUMO

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Assuntos
Alismatales , Ecossistema , Pradaria , Mar Mediterrâneo , Alismatales/fisiologia , Temperatura
2.
Science ; 383(6686): 976-982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422147

RESUMO

Animal body-size variation influences multiple processes in marine ecosystems, but habitat heterogeneity has prevented a comprehensive assessment of size across pelagic (midwater) and benthic (seabed) systems along anthropic gradients. In this work, we derive fish size indicators from 17,411 stereo baited-video deployments to test for differences between pelagic and benthic responses to remoteness from human pressures and effectiveness of marine protected areas (MPAs). From records of 823,849 individual fish, we report divergent responses between systems, with pelagic size structure more profoundly eroded near human markets than benthic size structure, signifying greater vulnerability of pelagic systems to human pressure. Effective protection of benthic size structure can be achieved through MPAs placed near markets, thereby contributing to benthic habitat restoration and the recovery of associated fishes. By contrast, recovery of the world's largest and most endangered fishes in pelagic systems requires the creation of highly protected areas in remote locations, including on the High Seas, where protection efforts lag.


Assuntos
Tamanho Corporal , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Peixes , Animais , Oceanos e Mares
3.
Mar Pollut Bull ; 195: 115511, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708607

RESUMO

Large boats can have a major impact on sensitive marine habitats like seagrass meadows when anchoring. The anchoring preference of large boats and their impacts can be mapped using Automatic Identification System (AIS). We found a constant increase in the number of anchoring events with, until recently, a large part of them within the protected Posidonia oceanica seagrass meadows. French authorities adopted a new regulation in 2019 forbidding any anchoring within P. oceanica seagrass meadows for boats larger than 24 m. The number of large ships (>24 m) anchoring in P. oceanica meadows significantly decreased after the enforcement of the regulation. The surface of avoided impact thanks to the new regulation corresponds to 134 to 217 tons of carbon sequestered by the preserved meadow in 2022. This work illustrates that a strict regulation of anchoring, based on accurate habitat maps, is effective in protecting seagrass meadows.


Assuntos
Alismatales , Aplicativos Móveis , Ecossistema , Alismatales/fisiologia , Navios , Carbono , Mar Mediterrâneo
4.
Ecol Lett ; 26(8): 1452-1465, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37322850

RESUMO

Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.


Assuntos
Biodiversidade , Ecossistema , Crescimento Demográfico , Fenótipo
5.
Front Microbiol ; 13: 985216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338105

RESUMO

We report genomic traits that have been associated with the life history of prokaryotes and highlight conflicting findings concerning earlier observed trait correlations and tradeoffs. In order to address possible explanations for these contradictions we examined trait-trait variations of 11 genomic traits from ~18,000 sequenced genomes. The studied trait-trait variations suggested: (i) the predominance of two resistance and resilience-related orthogonal axes and (ii) at least in free living species with large effective population sizes whose evolution is little affected by genetic drift an overlap between a resilience axis and an oligotrophic-copiotrophic axis. These findings imply that resistance associated traits of prokaryotes are globally decoupled from resilience related traits and in the case of free-living communities also from traits associated with resource availability. However, further inspection of pairwise scatterplots showed that resistance and resilience traits tended to be positively related for genomes up to roughly five million base pairs and negatively for larger genomes. Genome size distributions differ across habitats and our findings therefore point to habitat dependent tradeoffs between resistance and resilience. This in turn may preclude a globally consistent assignment of prokaryote genomic traits to the competitor - stress-tolerator - ruderal (CSR) schema that sorts species depending on their location along disturbance and productivity gradients into three ecological strategies and may serve as an explanation for conflicting findings from earlier studies. All reviewed genomic traits featured significant phylogenetic signals and we propose that our trait table can be applied to extrapolate genomic traits from taxonomic marker genes. This will enable to empirically evaluate the assembly of these genomic traits in prokaryotic communities from different habitats and under different productivity and disturbance scenarios as predicted via the resistance-resilience framework formulated here.

6.
Nat Commun ; 13(1): 4774, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050297

RESUMO

Setting appropriate conservation strategies in a multi-threat world is a challenging goal, especially because of natural complexity and budget limitations that prevent effective management of all ecosystems. Safeguarding the most threatened ecosystems requires accurate and integrative quantification of their vulnerability and their functioning, particularly the potential loss of species trait diversity which imperils their functioning. However, the magnitude of threats and associated biological responses both have high uncertainties. Additionally, a major difficulty is the recurrent lack of reference conditions for a fair and operational measurement of vulnerability. Here, we present a functional vulnerability framework that incorporates uncertainty and reference conditions into a generalizable tool. Through in silico simulations of disturbances, our framework allows us to quantify the vulnerability of communities to a wide range of threats. We demonstrate the relevance and operationality of our framework, and its global, scalable and quantitative comparability, through three case studies on marine fishes and mammals. We show that functional vulnerability has marked geographic and temporal patterns. We underline contrasting contributions of species richness and functional redundancy to the level of vulnerability among case studies, indicating that our integrative assessment can also identify the drivers of vulnerability in a world where uncertainty is omnipresent.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Peixes/fisiologia , Mamíferos
7.
PLoS Biol ; 20(6): e3001640, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671265

RESUMO

Reef fishes are closely connected to many human populations, yet their contributions to society are mostly considered through their economic and ecological values. Cultural and intrinsic values of reef fishes to the public can be critical drivers of conservation investment and success, but remain challenging to quantify. Aesthetic value represents one of the most immediate and direct means by which human societies engage with biodiversity, and can be evaluated from species to ecosystems. Here, we provide the aesthetic value of 2,417 ray-finned reef fish species by combining intensive evaluation of photographs of fishes by humans with predicted values from machine learning. We identified important biases in species' aesthetic value relating to evolutionary history, ecological traits, and International Union for Conservation of Nature (IUCN) threat status. The most beautiful fishes are tightly packed into small parts of both the phylogenetic tree and the ecological trait space. In contrast, the less attractive fishes are the most ecologically and evolutionary distinct species and those recognized as threatened. Our study highlights likely important mismatches between potential public support for conservation and the species most in need of this support. It also provides a pathway for scaling-up our understanding of what are both an important nonmaterial facet of biodiversity and a key component of nature's contribution to people, which could help better anticipate consequences of species loss and assist in developing appropriate communication strategies.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biodiversidade , Conservação dos Recursos Naturais , Estética , Peixes , Humanos , Filogenia
8.
Ecol Lett ; 25(4): 913-925, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064626

RESUMO

Outside controlled experimental plots, the impact of community attributes on primary productivity has rarely been compared to that of individual species. Here, we identified plant species of high importance for productivity (key species) in >29,000 diverse grassland communities in the European Alps, and compared their effects with those of community-level measures of functional composition (weighted means, variances, skewness and kurtosis). After accounting for the environment, the five most important key species jointly explained more deviance of productivity than any measure of functional composition alone. Key species were generally tall with high specific leaf areas. By dividing the observations according to distinct habitats, the explanatory power of key species and functional composition increased and key-species plant types and functional composition-productivity relationships varied systematically, presumably because of changing interactions and trade-offs between traits. Our results advocate for a careful consideration of species' individual effects on ecosystem functioning in complement to community-level measures.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Fenótipo , Folhas de Planta , Plantas
9.
Proc Biol Sci ; 289(1967): 20211694, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042423

RESUMO

Despite evidence of a positive effect of functional diversity on ecosystem productivity, the importance of functionally distinct species (i.e. species that display an original combination of traits) is poorly understood. To investigate how distinct species affect ecosystem productivity, we used a forest-gap model to simulate realistic temperate forest successions along an environmental gradient and measured ecosystem productivity at the end of the successional trajectories. We performed 10 560 simulations with different sets and numbers of species, bearing either distinct or indistinct functional traits, and compared them to random assemblages, to mimic the consequences of a regional loss of species. Long-term ecosystem productivity dropped when distinct species were lost first from the regional pool of species, under the harshest environmental conditions. On the contrary, productivity was more dependent on ordinary species in milder environments. Our findings show that species functional distinctiveness, integrating multiple trait dimensions, can capture species-specific effects on ecosystem productivity. In a context of an environmentally changing world, they highlight the need to investigate the role of distinct species in sustaining ecosystem processes, particularly in extreme environmental conditions.


Assuntos
Ecossistema , Árvores , Biodiversidade , Ambientes Extremos , Florestas
10.
Mol Ecol ; 31(4): 1216-1233, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878694

RESUMO

Understanding the molecular mechanisms that determine a species' life history is important for predicting their susceptibility to environmental change. While specialist species with a narrow niche breadth (NB) maximize their fitness in their optimum habitat, generalists with broad NB adapt to multiple environments. The main objective of this study was to identify general transcriptional patterns that would distinguish bacterial strains characterized by contrasted NBs along a salinity gradient. More specifically, we hypothesized that genes encoding fitness-related traits, such as biomass production, have a higher degree of transcriptional regulation in specialists than in generalists, because the fitness of specialists is more variable under environmental change. By contrast, we expected that generalists would exhibit enhanced transcriptional regulation of genes encoding traits that protect them against cellular damage. To test these hypotheses, we assessed the transcriptional regulation of fitness-related and adaptation-related genes of 11 bacterial strains in relation to their NB and stress exposure under changing salinity conditions. The results suggested that transcriptional regulation levels of fitness- and adaptation-related genes correlated with the NB and/or the stress exposure of the inspected strains. We further identified a shortlist of candidate stress marker genes that could be used in future studies to monitor the susceptibility of bacterial populations or communities to environmental changes.


Assuntos
Ecossistema , Salinidade , Aclimatação , Adaptação Fisiológica , Bactérias/genética
11.
Conserv Biol ; 36(1): e13798, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34153121

RESUMO

Deep learning has become a key tool for the automated monitoring of animal populations with video surveys. However, obtaining large numbers of images to train such models is a major challenge for rare and elusive species because field video surveys provide few sightings. We designed a method that takes advantage of videos accumulated on social media for training deep-learning models to detect rare megafauna species in the field. We trained convolutional neural networks (CNNs) with social media images and tested them on images collected from field surveys. We applied our method to aerial video surveys of dugongs (Dugong dugon) in New Caledonia (southwestern Pacific). CNNs trained with 1303 social media images yielded 25% false positives and 38% false negatives when tested on independent field video surveys. Incorporating a small number of images from New Caledonia (equivalent to 12% of social media images) in the training data set resulted in a nearly 50% decrease in false negatives. Our results highlight how and the extent to which images collected on social media can offer a solid basis for training deep-learning models for rare megafauna detection and that the incorporation of a few images from the study site further boosts detection accuracy. Our method provides a new generation of deep-learning models that can be used to rapidly and accurately process field video surveys for the monitoring of rare megafauna.


El aprendizaje profundo se ha convertido en una importante herramienta para el monitoreo automatizado de las poblaciones animales con video-censos. Sin embargo, la obtención de cantidades abundantes de imágenes para preparar dichos modelos es un reto primordial para las especies elusivas e infrecuentes porque los video-censos de campo proporcionan pocos avistamientos. Diseñamos un método que aprovecha los videos acumulados en las redes sociales para preparar a los modelos de aprendizaje profundo para detectar especies infrecuentes de megafauna en el campo. Preparamos algunas redes neurales convolucionales con imágenes tomadas de las redes sociales y las pusimos a prueba con imágenes tomadas en los censos de campo. Aplicamos nuestro método a los censos aéreos en video de dugongos (Dugong dugon) en Nueva Caledonia (Pacífico sudoccidental). Las redes neurales convolucionales preparadas con 1,303 imágenes de las redes sociales produjeron 25% de falsos positivos y 38% de falsos negativos cuando las probamos en video-censos de campo independientes. La incorporación de un número pequeño de imágenes tomadas en Nueva Caledonia (equivalente al 12% de las imágenes de las redes sociales) dentro del conjunto de datos usados en la preparación dio como resultado una disminución de casi el 50% en los falsos negativos. Nuestros resultados destacan cómo y a qué grado las imágenes recolectadas en las redes sociales pueden ofrecer una base sólida para la preparación de modelos de aprendizaje profundo para la detección de megafauna infrecuente. También resaltan que la incorporación de unas cuantas imágenes del sitio de estudio aumenta mucho más la certeza de detección. Nuestro método proporciona una nueva generación de modelos de aprendizaje profundo que pueden usarse para procesar rápida y acertadamente los video-censos de campo para el monitoreo de megafauna infrecuente.


Assuntos
Aprendizado Profundo , Mídias Sociais , Animais , Conservação dos Recursos Naturais , Humanos , Redes Neurais de Computação
13.
Ecol Lett ; 24(9): 1988-2009, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015168

RESUMO

Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Fenótipo , Projetos de Pesquisa
14.
Nat Commun ; 11(1): 5071, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033235

RESUMO

Identifying species that are both geographically restricted and functionally distinct, i.e. supporting rare traits and functions, is of prime importance given their risk of extinction and their potential contribution to ecosystem functioning. We use global species distributions and functional traits for birds and mammals to identify the ecologically rare species, understand their characteristics, and identify hotspots. We find that ecologically rare species are disproportionately represented in IUCN threatened categories, insufficiently covered by protected areas, and for some of them sensitive to current and future threats. While they are more abundant overall in countries with a low human development index, some countries with high human development index are also hotspots of ecological rarity, suggesting transboundary responsibility for their conservation. Altogether, these results state that more conservation emphasis should be given to ecological rarity given future environmental conditions and the need to sustain multiple ecosystem processes in the long-term.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Internacionalidade , Mamíferos/fisiologia , Animais , Geografia , Humanos , Camada de Gelo , Filogenia , Análise de Componente Principal , Especificidade da Espécie
15.
Ecol Lett ; 23(8): 1263-1275, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476239

RESUMO

Evidence is growing that evolutionary dynamics can impact biodiversity-ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine-tuning, and co-adapted communities, where traits have co-evolved, in terms of emerging biodiversity-productivity, biodiversity-stability and biodiversity-invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity-productivity relationships were generally less positive among co-adapted communities, with reduced contribution of sampling effects. The effect of community-adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co-adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short-term experiments and observations following recent changes may not be safely extrapolated into the future, once eco-evolutionary feedbacks have taken place.


Assuntos
Biodiversidade , Ecossistema , Aclimatação , Evolução Biológica , Fenótipo
16.
Biol Lett ; 15(11): 20190703, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31744414

RESUMO

Cultural and recreational values of biodiversity are considered as important dimensions of nature's contribution to people. Among these values, the aesthetics can be of major importance as the appreciation of beauty is one of the simplest forms of human emotional response. Using an online survey, we disentangled the effects of different facets of biodiversity on aesthetic preferences of coral reef fish assemblages that are among the most emblematic assemblages on Earth. While we found a positive saturating effect of species' richness on human preference, we found a net negative effect of species abundance, no effect of species functional diversity and contrasting effects of species composition depending on species' attractiveness. Our results suggest that the biodiversity-human interest relationship is more complex than has been previously stated. By integrating several scales of organization, our study is a step forward in better evaluating the aesthetic value of biodiversity.


Assuntos
Recifes de Corais , Peixes , Animais , Biodiversidade , Ecossistema , Estética
17.
Ecol Evol ; 9(7): 4025-4037, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015985

RESUMO

A better understanding of species coexistence and community dynamics may benefit from more insights on trait variability at the individual and species levels.Tadpole assemblages offer an excellent system to understand the relative influence of intraspecific and interspecific variability on community assembly, due to their high phenotypic plasticity, and the strong influence that environmental variables have on their spatial distribution and individual performance.Here, we quantified the intraspecific and interspecific components of tadpoles' trait variability in order to investigate their relative role in shaping tadpole communities.We selected eight functional traits related to microhabitat use, foraging strategies, and swimming ability. We measured these traits on 678 individuals from 22 species captured in 43 ponds in the Atlantic Forest. We used single- and multitrait analyses to decompose trait variability. To explore the action of external and internal filtering on community assembly, we used a variance decomposition approach that compares phenotypic variability at the individual, population, community and regional levels.On average, 33% of trait variability was due to within-species variation. This decomposition varied widely among traits. We found only a reduced effect of external filtering (low variation in the height of the ventral fin within ponds in comparison to the total variation), whereas the internal filtering was stronger than expected. Traits related to the use of different microhabitats through the water column were generally less variable than traits related to swimming ability to escape of predators, with tail traits being highly variable within species.Our study highlights the importance of incorporating both intraspecific and interspecific, trait differences and of focusing on a diversity of traits related to both stabilizing niche and fitness differences in order to better understand how trait variation relates to species coexistence.

18.
PLoS One ; 14(3): e0213360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856193

RESUMO

The relative contribution of ecological processes in shaping metacommunity dynamics in heavily managed landscapes is still unclear. Here we used two complementary approaches to disentangle the role of environment and spatial effect in farmland bird community assembly in an intensive agro-ecosystem. We hypothesized that the interaction between habitat patches and dispersal should play a major role in such unstable and unpredictable environments. First, we used a metacommunity patterns analysis to characterize species co-occurrences and identify the main drivers of community assembly; secondly, variation partitioning was used to disentangle environmental and geographical factors (such as dispersal limitation) on community structure and composition. We used high spatial resolution data on bird community structure and composition distributed among 260 plots in an agricultural landscape. Species were partitioned into functional classes, and point count stations were classified according to landscape characteristics before applying metacommunity and partitioning analyses within each. Overall we could explain around 20% of the variance in species composition in our system, revealing that stochasticity remains very important at this scale. However, this proportion varies depending on the scale of analysis, and reveals potentially important contributions of environmental filtering and dispersal. These conclusions are further reinforced when the analysis was deconstructed by bird functional classes or by landscape habitat classes, underlining trait-related filters, thus reinforcing the idea that wooded areas in these agroecosystems may represent important sources for a specific group of bird species. Our analysis shows that deconstructing the species assemblages into separate functional groups and types of landscapes, along with a combination of analysis strategies, can help in understanding the mechanisms driving community assembly.


Assuntos
Aves , Ecossistema , Fazendas , Animais , Biodiversidade , França , Dinâmica Populacional/estatística & dados numéricos , Especificidade da Espécie , Processos Estocásticos
19.
Proc Biol Sci ; 285(1886)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185647

RESUMO

As a cultural ecosystem service, the aesthetic value of landscapes contributes to human well-being, but studies linking biodiversity and ecosystem services generally do not account for this particular service. Therefore, congruence between the aesthetic perception of landscapes, ecological value and biodiversity remains poorly understood. Here, we describe the conceptual background, current methodologies and future challenges of assessing landscape aesthetics and its relationship with biodiversity. We highlight the methodological gaps between the assessment of landscape aesthetics, ecological diversity and functioning. We discuss the challenges associated with connecting landscape aesthetics with ecological value, and the scaling issues in the assessment of human aesthetics perception. To better integrate aesthetic value and ecological components of biodiversity, we propose to combine the study of aesthetics and the understanding of ecological function at both the species and landscape levels. Given the urgent need to engage society in conservation efforts, this approach, based on the combination of the aesthetic experience and the recognition of ecological functioning by the general public, will help change our culture of nature and promote ecologically oriented conservation policies.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Estética , Humanos
20.
Sci Rep ; 8(1): 11733, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082795

RESUMO

The biodiversity crisis has spurred scientists to assess all facets of biodiversity so that stakeholders can establish protection programs. However, species that are perceived as beautiful receive more attention than less attractive species. This dynamic could have tremendous consequences on people's willingness to preserve biodiversity. Coral reefs might be particularly affected by this issue as they are key ecosystems that provide many services, such as aesthetic and cultural benefits attracting millions of tourists each year. Here we show the results of an online photographic questionnaire completed by 8,000 participants whereby preferences were assessed for a set of 116 reef fishes. Based on these preferences, we compared the functional richness, i.e. the amount of functional space filled, by groups of fishes based on their perceived attractiveness. We present evidence indicating that the least attractive coral reef fishes have a much higher functional richness than the most attractive species. Our results highlight the extent to which species aesthetic values' may be disconnected from their ecological values and could be misleading for conservation purposes. There is thus an urgent need to increase the attention of scientists and the general public towards less attractive species to better appreciate and protect the species that crucially support functional diversity in endangered ecosystems.


Assuntos
Peixes , Animais , Recifes de Corais , Ecologia , Ecossistema , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...